2.2 Evaluate and Graph Polynomial Functions

Monday, November 13, 2017 7:20 AM

Polynomial Function- 1) exponents are all whole numbers and 2) coefficients are all real numbers

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

 a_n is the leading coefficient n is the degree

Standard Form-terms are written in descending order of exponents from left to right

Degree	Туре	Standard Form	Example
0	Constant	$f(x) = a_0$	f(x) = 39
1	Linear	$f(x) = a_1 x + a_0$	f(x) = 2x + 1
2	Quadratic	$f(x) = a_2 x^2 + a_1 x + a_0$	$f(x) = 5x^2 - 3x + 7$
3	Cubic	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$f(x) = 6x^3 + x^2 - x + 1$
4	Quartic	$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$f(x) = x^4 - x + 17$

End Behavior of Polynomial Functions

Synthetic Substitution

 $f(x) = 2x^4 - 5x^3 - 4x + 8$ when x = 3

